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of the Schrödinger equation.
Part 2. Development of the generator, optimization

of the generator and numerical results∗

G. Avdelasa,b, A. Konguetsofa and T.E. Simosa,∗∗
a Section of Mathematics, Department of Civil Engineering, School of Engineering,

Democritus University of Thrace, GR-671 00 Xanthi, Greece
E-mail: tsimos@mail.ariadne-t.gr

b Laboratory of Applied Mathematics and Computers, Department of Sciences,
Technical University of Crete, GR-731 00 Chania, Crete

Received 26 March 2001

The generator of tenth-order hybrid explicit methods, the basic method of which has been
developed in part 1, is constructed and also optimized, by maximization of the intervals of
periodicity. The efficiency of the new methods is shown by their application to the coupled
differential equations of the Schrödinger type.
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1. Introduction

Researchers in numerous topics in scientific areas, such as theoretical physics,
quantum mechanics, atomic physics, molecular physics, theoretical chemistry, astro-
physics, chemical physics, electronics and elsewhere (see [1,2]) show a lot of interest
for the solution of special second order periodic initial-value problems of the form:

y′′ = f (x, y), y(x0) = y0, y′(x0) = y′0. (1)

Lately great activity has been observed [3–18,27] for the numerical solution of
problems of the form equation (1). Some of the characteristics of the numerical meth-
ods, used in the solution of the above problems are the maximum algebraic order, the
maximum phase-lag order and the maximum interval of periodicity.
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In paper [19] the development of the basic method of a generator of hybrid explicit
methods for the numerical solution of the Schrödinger equation is described. The meth-
ods are of tenth algebraic order. In this paper we create the generator, and the analysis
of the optimization of the generator is given. We call generator, a family of methods,
in which the coefficients of the methods are definedautomatically. This is very impor-
tant for error-control procedures, since we can use, without computational cost, all the
methods of the family, in order to increase the step-size of integration. The methods
have minimal phase-lag. The coefficients of the methods of the generator are calculated
appropriately, in order to satisfy this property.

In section 2 the analysis of the phase-lag for symmetric two-step methods is pre-
sented. The derivation of the methods’ parameters is given in section 3. In the next sec-
tion the construction of the optimized generator is explained. Stability analysis is shown
in section 5. In section 6 an automatic error control mechanism is given and a variable
step procedure, which is based on the new methods, is described. Finally, numerical
results and comparison of the generators with some other methods are illustrated.

2. Phase-lag analysis

Based on Lambert and Watson [4], we use the scalar test equation

y′′ = −w2y, (2)

in order to investigate the stability properties of methods for solving the initial-value
problem equation (1) and the interval of periodicity.

When we apply a symmetric two-step method to the scalar equation (2), we obtain
a difference equation of the form:

yn+1 − 2C(s)yn + yn−1 = 0, (3)

wheres = wh, h is the step length,C(s) = B(s)/A(s), whereA(s) andB(s) are
polynomials ins, andyn is the computed approximation toy(nh), n = 0,1,2, . . . .

The characteristic equation associated with (3) is

z2− 2C(s)z + 1= 0. (4)

Bruca and Nigro [5] introduced the frequency distortion as an important property
of a method for solving special second order initial-value problems. For frequency dis-
tortion, other authors use the terms ofphase-lag, phase-error or dispersion. From now
on, we use the termphase-lag.

The roots of the characteristic equation (4) are denoted asz1 andz2.
We have the following definitions:

Definition 1 [10,11,17,20]. The method (3) is unconditionally stable if|z1| � 1 and
|z2| � 1 for all values ofs.
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Definition 2. Following Lambert and Watson [4], we say that the numerical method
equation (3) has an interval of periodicity(0, s2

0), if for all s2 ∈ (0, s2
0), z1 andz2 satisfy

z1 = eiβ(s) and z2 = e−iβ(s), (5)

whereβ(s) is a real function ofs. For any method corresponding to the characteristic
equation (4), the phase-lag is defined as the leading term in the expansion of

t = s − β(s) = s − cos−1[C(s)]. (6)

If the quantityt = O(sq+1) ass → 0, the order of phase-lag isq.

Definition 3 [6]. The method (3) isP -stable if its interval of periodicity is (0,∞).

Theorem 1. A method, which has the characteristic equation (4) has an interval of pe-
riodicity (0, s2

0), if for all s2 ∈ (0, s2
0) |C(s)| < 1.

Theorem 2. About the method, which has an interval of periodicity(0, s2
0), we can

write:

cos
[
β(s)

] = C(s), wheres2 ∈ (0, s2
0

)
. (7)

For the proofs of the above theorems see [18].
We note that van der Houwen and Sommeijer [20] and Coleman [10] have chosen

this approach to find the phase-lag. Based on this, Coleman [10] arrived at the following
remark.

Remark 1. If the phase-lag order isq = 2r, then we have:

t = cs2r+1+O
(
s2r+3

)

⇒ cos(s)− C(s) = cos(s)− cos(s − t) = cs2r+2+O

(
s2r+4). (8)

With the properties of theinterval of periodicity and thephase-lag, it is easy to
see why the Numerov’s method is so popular for the numerical solution of problems of
the form (1), since it has a larger interval of periodicity than the sixth-order four-step
methods and has the same phase-lag order (four) compared with the four-step methods.

3. Derivation of the free parameters wi of the generator

Theorem 3. Application of the family of methods introduced in [19] to the scalar test
equation (2) leads to the difference equation (3) withA(s) = 1 andB(s) given by:

B(s)=
5∑
i=0

(−1)i 1
(2i)!s

2i − 112943657
152374763520000s

12− 122489653693
1645647446016000000s

14

− 30495677389
19747769352192000000s

16− 93281051
13165179568128000000s

18
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+ (17081263
22031152 + 73363119059

223314547
s2 + 16305968459

224315547
s4

+ 4596390901
22731655 s

6+ 93281051
228315557

s8
) b+6∑
i=6

[
(−1)i+1s2i2i

b+6−i∏
j=b

wj

]
, (9)

whereb denotes each method of the family and is defined by the user. The proof is given
in appendix.

Our methods are explicit, so it is obvious thatC(s) = B(s).
In order to facilitate our work, we callAR andAT the quantities given below:

AR= (17081263
22031152 s

12+ 73363119059
223314547

s14+ 16305968459
224315547

s16+ 4596390901
22731655 s

18+ 93281051
228315557

s20
)
,

(10)

AT =
b+6∑
i=6

[
(−1)i+1s2i−122i

b+6−i∏
j=b

wj

]
. (11)

We calculate the phase-lag.

1

s2

[
cos(s)− B(s)]= 1

s2

[ ∞∑
i=0

(−1)i 1
(2i)!s

2i −
5∑
i=0

(−1)i 1
(2i)!s

2i + 112943657
152374763520000s

12

+ 122489653693
1645647446016000000s

14+ 30495677389
19747769352192000000s

16

+ 93281051
13165179568128000000s

18− AR · AT
]

= 1

s2

[ ∞∑
i=6

(−1)i 1
(2i)!s

2i + 112943657
152374763520000s

12

+ 122489653693
1645647446016000000s

14+ 30495677389
19747769352192000000s

16

+ 93281051
13165179568128000000s

18− AR · AT

]
, (12)

1

s2

[
cos(s)− B(s)]= 0


⇒ 1

s2

[
1

12!s
12− 1

14!s
14+ 1

16!s
16− 1

18!s
18+ 112943657

152374763520000s
12

+ 122489653693
1645647446016000000s

14+ 30495677389
19747769352192000000s

16

+ 93281051
13165179568128000000s

18− AR · AT
] = 0


⇒ 1

s2

[
1245879427

1676122398720000s
12+ 122593247666693

1647293093462016000000s
14+ 30527117850389

19767517121544192000000s
16

+ 1587328652867
224031860710834176000000s

18− AR · AT
] = 0
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⇒ 1245879427
1676122398720000s

10+ 122593247666693
1647293093462016000000s

12

+ 30527117850389
19767517121544192000000s

14+ 1587328652867
224031860710834176000000s

16

= (17081263
22031152 s

10+ 73363119059
223314547

s12+ 16305968459
224315547

s14

+ 4596390901
22731655 s

16+ 93281051
228315557s

18
) b+6∑
i=6

[
(−1)i+1s2i−122i

b+6−i∏
j=b

wj

]


⇒
b+6∑
i=6

[
(−1)i+1s2i−122i

b+6−i∏
j=b

wj

]
= u0 + u1s

2+ u2s
4+ · · ·


⇒ −26wb + 27s2wbwb−1+ · · · + (−1)b+72b+6s2(b+6)−12wbwb−1 · · ·w0

= u0+ u1s
2 + u2s

4 + · · · . (13)

The formula obtained forwi is:

wb−i = (−1)i+1 ui

2i+6
∏b−i+1
j=b wj

, (14)

wherei = 0,1, . . . , b and
∏b−i+1
j=b wj = 1 for i = 0.

We clarify the formula (14), with an example.
According to the desired approximation, we choose the value ofb. For b = 5,

using formula (14) we obtain:

w5=−u0

26
, w4 = u1

27w5
, w3 = − u2

28w5w4
, w2 = u3

29w5w4w3
,

w1=− u4

210w5w4w3w2
, w0 = u5

211w5w4w3w2w1
.

4. Optimized generator

Based on the generator of methods presented previously, we intent to construct
another one with better stability. In order to accomplish this, we work as follows. For
every method of the family we maintain the parameterw0 free. Applying the formu-
lae (9) and (14),i = 0, . . . , b − 1, we find the values ofB(s) andwj , j = b(−1)1, and
using maximization techniques, we calculate with efficient approximation the parameter
w0, trying to obtain larger intervals of periodicity.

5. Stability analysis

According to theorem 1, it follows that a symmetric two step method has a non-
empty interval of periodicity, ifA(s)± B(s) > 0 for all s2 in (0, s2

0). Based on the fact,
that the methods we produce are explicit, we haveA(s) = 1.
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Table 1
Intervals of periodicity for several methods of the generator.

b Int. of period. b Int. of period.

0 12.62 1 16.22
2 8.66 3 14.02
4 9.02 5 14.40
6 9.30 7 14.63
8 9.48 9 14.76
...

...
...

...

Table 2
Intervals of periodicity for several methods after the optimization of

the generator.

b Int. of period. b Int. of period.

0 14.39 1 20.16
2 21.68 3 15.90
4 20.24 5 16.01
6 19.92 7 16.05
8 14.63 9 16.03
..
.

..

.
..
.

..

.

In order to find the stabilities of the new generators, we calculateB(s), equation (9).
The intervals of periodicity for some methods of the first generator, are given in table 1
and for some methods of the optimized generator, are given in table 2. In tables 1
and 2,b denotes the method of the family and is chosen according to the will of the
user.

6. Application of the new method. Comparison of the results

We apply the new family of explicit methods, the optimized one and the eighth
algebraic order Runge–Kutta–Nyström method of Dormand et al. [21] to the coupled
differential equations of the Schrödinger type and we compare the results extracted. For
every pointx between the boundaries, we have set, we obtain the absolute difference
between the numerical and the theoretical solution of the problem. We call the maximum
of these differencesthe absolute error.

6.1. Local error estimation

In order to estimate the local truncation error (LTE) for the integration of systems
of initial-value problems, many methods are used in the literature (see, for example, [12–
15,22] and references therein).
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In this paper the local error estimation technique is based on an embedded pair of
integration methods and on the fact that, when the phase-lag order is maximal, then the
approximation of the solution for problems with an oscillatory or periodic solution is
better.

We have the following definition.

Definition 4. We define thelocal phase-lag error estimate in the lower order solution
yLn+1 by the quantity

Epl =
∣∣yHn+1 − yLn+1

∣∣, (15)

whereyHn+1 is the solution obtained with higher phase-lag order method andyLn+1 is the
solution obtained with lower phase-lag order method. In the present caseyHn+1 is the
solution obtained using theb family of methods, whileyLn+1 is the solution obtained
using theb − 1 family of methods developed in sections 3 and 4. Under the assumption
thath is sufficiently small, thelocal error in yHn+1 can be neglected compared with that
in yLn+1.

If a local error ofTOL is requested and thenth step of the integration procedure
is obtained using a step size equal tohn, the estimated step size for the(n + 1)st step,
which would give a local error ofTOL, must be

hn+1 = hn
(

TOL

Epl

)1/q

, (16)

whereq is the phase-lag order of the method.
However, for ease of programming we have restricted all step changes to halving

and doubling. Thus, based on the procedure developed in [11–14], the step control
procedure, which we have actually used is

If Epl < TOL, hn+1 = 2hn;
If 100 · TOL > Epl � TOL, hn+1 = hn; (17)

If Epl � 100· TOL, hn+1 = hn2 and repeat the step.

We note here, that the local phase-lag error estimate is in the lower order solutionyLn+1.
However, if this error estimate is acceptable, i.e., less thanTOL, we adopt the widely
used procedure of performing local extrapolation. Thus, although we are actually con-
trolling an estimate of the local error in lower phase-lag order solutionyLn+1, it is the
higher order solutionyHn+1, which we actually accept at each point.

Now our trick to estimate the local phase-lag error inyLn+1 using the phase-lag of
yHn+1 is clear. At every step we start withb = 0 and go on increasingb and checking the
local phase-lag error (Epl), until Epl becomes less than the boundacc (0� b � bound).
If there is ab, for whichEpl < TOL, then the step size is doubled, otherwise we carry
out the integration. Moreover, when we applied our methods to our computer (i586
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PC), we observed, that, if the value ofbound was greater than 7, then (because of the
round off errors) the phase-lag became of higher order than the precision of the computer
used.

6.2. Coupled differential equations of the Schrödinger type

Many problems in theoretical physics and chemistry, molecular physics, atomic
physics, physical chemistry, quantum chemistry, chemical physics, electronics and mole-
cular biology can be transformed to the solution of coupled differential equations of the
Schrödinger type.

The close-coupling differential equations of the Schrödinger type may be written
in the form [

d2

dx2
+ k2

i −
li(li + 1)

x2
− Vii

]
yij =

N∑
m=1

Vimymj , (18)

for 1� i � N andm �= i.
We have investigated the case, in which all channels are open. So we have the

following boundary conditions (see for details [23]):

yij = 0 atx = 0, (19)

yij ∼ kixjli (kix)δij +
(
ki

kj

)1/2

Kij kixnli (kix), (20)

wherejl(x) andnl(x) are the spherical Bessel and Neumann functions, respectively. We
can use the present methods to problems involving close channels.

Based on the detailed analysis developed in [23] and defining a matrixK ′ and
diagonal matricesM, N by

K ′ij =
(
ki

kj

)1/2

Kij , Mij = kixjli (kix)δij , Nij = kixnli (kix)δij ,

we find that the asymptotic condition (20) may be written as

y ∼M+ NK′. (21)

One of the most popular methods for the approximate solution of the coupled
differential equations arising from the Schrödinger equation is the Iterative Numerov
method of Allison [23].

A real problem in theoretical physics and chemistry, atomic physics, quantum
chemistry and molecular physics, which can be transformed to close-coupling differen-
tial equations of the Schrödinger type is the rotational excitation of a diatomic molecule
by neutral particle impact. Denoting, as in [23], the entrance channel by the quan-
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tum numbers(j, l), the exit channels by(j ′, l′), and the total angular momentum by
J = j + l = j ′ + l′, we find that[

d2

dx2
+ k2

j ′j −
l′(l′ + 1)

x2

]
y
Jjl

j ′l′ (x) =
2µ

h̄2

∑
j ′′

∑
l′′

〈
j ′l′; J ∣∣V ∣∣j ′′l′′; J 〉yJjlj ′′ l′′(x), (22)

where

kj ′j = 2µ

h̄2

[
E + h̄

2

2I

{
j (j + 1)− j ′(j ′ + 1

)}]
, (23)

E is the kinetic energy of the incident particle in the center-of-mass system,I is the
moment of inertia of the rotator, andµ is the reduced mass of the system.

Following the analysis of [23], the potentialV may be written as

V
(
x, k̂j ′j k̂jj

) = V0(x)P0
(

k̂j ′j k̂jj
)+ V2(x)P2

(
k̂j ′j k̂jj

)
, (24)

and the coupling matrix element is given by〈
j ′l′; J ∣∣V ∣∣j ′′l′′; J 〉 = δj ′j ′′δl′l′′V0(x)+ f2

(
j ′l′, j ′′l′′; J )V2(x), (25)

where thef2 coefficients can be obtained from formulas given by Berstein et al. [24]
andk̂j ′j is a unit vector parallel to the wave vectorkj ′j andPi , i = 0,2, are Legendre
polynomials (see for details [24]). The boundary conditions may then be written as
(see [23])

y
Jjl

j ′l′ (x)= 0 atx = 0, (26)

y
Jjl

j ′l′ (x)∼ δjj ′δll′ exp
[−i(kjjx − 1/2lπ)

]
−
(
ki

kj

)1/2

SJ
(
j l; j ′l′) exp

[
i
(
kj ′j x − 1/2l′π

)]
, (27)

where the scattering S matrix is related to theK matrix of (20) by the relation

S = (I+ iK)(I− iK)−1. (28)

The calculation of the cross sections for rotational excitation of molecular hydrogen by
impact of various heavy particles requires the existance of the numerical method for the
integration from the initial value to matching points.

In our numerical test we choose theS matrix, which is calculated using the follow-
ing parameters

2µ

h̄2 = 1000.0,
µ

I
= 2.351, E = 1.1,

V0(x) = 1

x12
− 2

1

x6
, V2(x) = 0.2283V0(x).

As is described in [23], we takeJ = 6 and consider excitation of the rotator from
the j = 0 state to levels up toj ′ = 2,4 and 6 giving sets offour, nine and sixteen
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Table 3
RTC (real time of computation in seconds) in the calculation of|S|2 for the variable-step methods (1)–(8).

TOL = 10−6 andhmax is the maximum stepsize.

Method N hmax RTC

Iterative Numerov [23] 4 0.014 3.25
9 0.014 23.51

16 0.014 99.15

Variable-step method of Raptis and Cash [26] 4 0.056 1.65
9 0.056 8.68

16 0.056 45.21

Variable-step method of Simos [28] 4 0.448 0.29
9 0.448 2.87

16 0.448 11.17

RKN1 [22] 4 0.224 1.02
9 0.224 6.33

16 0.112 22.14

RKN2 [21] 4 0.224 0.82
9 0.224 5.01

16 0.224 13.43

Generator of methods of order 8 [29] 4 0.896 0.10
9 0.896 1.04

16 0.896 7.96

New generator of methods of order 10 4 0.896 0.06
9 0.896 0.75

16 0.896 6.13

Optimized generator 4 1.792 0.04
9 0.896 0.63

16 0.896 5.32

coupled differential equations, respectively. Following Berstein [25] and Allison [23]
the reduction of the interval[0,∞) to [0, x0] is obtained. The wavefunctions are then
vanished in this region and consequently the boundary condition (26) may be written as

y
Jjl

j ′ l′ (x0) = 0. (29)

For the numerical solution of this problem we have used (1) the well-known It-
erative Numerov method of Allison [23], (2) the variable-step method of Raptis and
Cash [26], (3) the variable-step method developed by Simos [28], (4) the Runge–Kutta–
Nyström method developed by Dormand and Prince (RKN1) (see table 13.4 of [22]),
(5) the Runge–Kutta–Nyström method developed by Dormand et al. (RKN2) (see [21]),
(6) the generator embedded methods of order eight [29], (7) the new generator of meth-
ods of order ten and (8) the new optimized generator. In table 3 we present the real time
of computation required by the methods mentioned above to calculate the square of the
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modulus of theS matrix for sets of 4, 9 and 16 coupled differential equations. In table 3
N indicates the number of equations of the set of coupled differential equations.

In all cases the variable step procedure developed in this paper is considerably
more efficient than other well known finite difference ones for a given value of hmax, so
that the new family of methods can use a larger value of hmax and still gets converged
results.

All computations were carried out using double precision arithmetic (16 significant
digits accuracy).

Appendix. Proof of B(s)

Forb = 0B(s) becomes:

B0(s)= T (s)+
(

17081263
21431152 s

12+ 73363119059
217314547 s

14+ 16305968459
218315547 s

16

+ 4596390901
22131655 s

18+ 93281051
222315557

s20
)
w0, (A.1)

whereT (s) represents:

T (s)=
5∑
i=0

(−1)i 1
(2i)!s

2i − 112943657
152374763520000s

12− 122489653693
1645647446016000000s

14

− 30495677389
19747769352192000000s

16− 93281051
13165179568128000000s

18. (A.2)

It is obvious that equation (A.1) is true.
Forb = v the formula (9) becomes:

Bv(s)= T (s)+
(

17081263
22031152 + 73363119059

223314547 s
2 + 16305968459

224315547 s
4

+ 4596390901
22731655 s

6 + 93281051
228315557s

8) v+6∑
i=6

[
(−1)i+1s2i2i

v+6−i∏
j=v

wj

]
. (A.3)

Assuming equation (A.3) is true, we will prove that the formula (9) forb = v + 1
is true. if we would setb = v + 1, equation (9) would become:

Bv+1(s)= T (s)+
(

17081263
22031152 + 73363119059

223314547
s2 + 16305968459

224315547
s4

+ 4596390901
22731655 s

6+ 93281051
228315557

s8
) v+7∑
i=6

[
(−1)i+1s2i2i

v+7−i∏
j=v+1

wj

]
. (A.4)

Adding to equation (A.3) the quantity1(s):

1(s)= (17081263
22031152 + 73363119059

223314547
s2 + 16305968459

224315547
s4+ 4596390901

22731655 s
6 + 93281051

228315557
s8
)

×[−26s12(wv+1− wv)+ 27s14(wv+1− wv−1)wv + · · ·
+ (−1)v+72v+6s2(v+6)(wv+1− w0)wvwv−1 · · ·w1

+ (−1)v+82v+7s2(v+7)wv+1wv · · ·w0
]
, (A.5)
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we obtain:

Bv(s)+1(s)= T (s)+
(

17081263
22031152 + 73363119059

223314547
s2+ 16305968459

224315547
s4

+ 4596390901
22731655 s

6 + 93281051
228315557s

8)
×
(
v+6∑
i=6

[
(−1)i+1s2i2i

v+6−i∏
j=v

wj

]
− 26s12(wv+1− wv)

+27s14(wv+1− wv−1)wv + · · · + (−1)v+82v+7s2(v+7)wv+1wv · · ·w0

)
= T (s)+ (17081263

22031152 + 73363119059
223314547

s2

+ 16305968459
224315547

s4 + 4596390901
22731655 s

6 + 93281051
228315557

s8)
× [−26s12wv + 27s14wv−1wv + · · ·
+ (−1)v+72v+6s2(v+6)wvwv−1 · · ·w0

−26s12(wv+1− wv)+ 27s14(wv+1− wv−1)wv + · · ·
+ (−1)v+72v+6s2(v+6)(wv+1− w0)wvwv−1 · · ·w1

+ (−1)v+82v+7s2(v+7)wv+1wv · · ·w0
]

=
5∑
i=0

(−1)i 1
(2i)!s

2i − 112943657
152374763520000s

12− 122489653693
1645647446016000000s

14

− 30495677389
19747769352192000000s

16− 93281051
13165179568128000000s

18

+ (17081263
22031152 + 73363119059

223314547
s2 + 16305968459

224315547
s4 + 4596390901

22731655 s
6 + 93281051

228315557
s8
)

× (−26s12wv+1+ · · · + (−1)v+82v+7s2(v+7)wv+1 · · ·w0
)
. (A.6)

Based on the previous, we can see that equation (A.6) is equivalent to equa-
tion (A.4). So, if we add1(s) to B(s) (for any b = v), we obtain the nextB(s) (for
b = v + 1). Thus the formula has been proved.
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